

Monday June 14

	Tough Nuts in Catalysis: on the Synergy of Coupling14h30High Throughput Approaches in Computation and ExperimentationS. A. SchunkAUDITORIUM 1
Large scale exploration of the biocatalytic capabi- lity of biodiversity for biocatalysis & synthetic biolo- gy applications V. De Berardinis	Selective Hydroconversion of 5-Hydroxymethylfur fural to Biofuels over Monometallic Ni/SBA-15 and Cu/SBA-15 Catalyst S. Chen AUDITORIUM 2
PL AUDITORIUM 1 m2p-labs Beckman Coulter Life Sciences AUDITORIUM 1	Development of highly active catalyst system for bioethanol-to-butadiene reaction via high throughput methods Y. Shinke AUDITORIUM 2 0C Avantium Catalysis
Lighting up the path to protein engineering – From high- to ultra high throughput screening F. Rudroff AUDITORIUM 1	AUDITORIUM 2 15h50 16h00 16
	16h20 Highthroughput approach for optimizing three-way-catalyst for natural gas engine: impor- tance of the metal-support interface Y. Zheng AUDITORIUM 2
Electrochemical screening asalternative for drug and enzyme discovery B. Doumèche AUDITORIUM 1	Development of Fe-Ni/SiO2Bimetallic Catalysts for Furfural Hydrogenation using a High-Throughput Screening Approach D. Shi
Electrochemical screening asalternative for drug and enzyme discovery B. Doumèche OC AUDITORIUM 1 Optimization of the lipase B for specificity of substrateand selectivity of a transesterification reaction O. Vidalin OC AUDITORIUM 1	Development of Fe-Ni/SiO2Bimetallic Catalysts for Furfural Hydrogenation using a High-Throughput Screening Approach D. Shi AUDITORIUM 2 0C Polyolefin chain shuttling at ansa-metallocene catalysts: legend and reality A. Vittoria AUDITORIUM 2 0C
Electrochemical screening asalternative for drug and enzyme discovery B. Doumèche OC AUDITORIUM 1 Optimization of the lipase B for specificity of substrateand selectivity of a transesterification reaction O. Vidalin OC AUDITORIUM 1 Enzymatic acylation of levoglucosan in batch and continuous flow to obtain high value-added mole- cules I. Itabaiana OC AUDITORIUM 1	The second se
Electrochemical screening asalternative for drug and enzyme discovery B. Doumèche AUDITORIUM 1 Optimization of the lipase B for specificity of substrateand selectivity of a transesterification reaction O. Vidalin OC AUDITORIUM 1 Enzymatic acylation of levoglucosan in batch and continuous flow to obtain high value-added mole- cules I. Itabaiana OC AUDITORIUM 1 Continuous colorimetric screening assays to exploreboth acceptor and donor substratesof amine-Transaminases L. Gourbeyre OC AUDITORIUM 1	Image: Construction of the second
Electrochemical screening asalternative for drug and enzyme discovery B. Doumèche AUDITORIUM 1 Optimization of the lipase B for specificity of substrateand selectivity of a transesterification reaction O. Vidalin OC AUDITORIUM 1 Enzymatic acylation of levoglucosan in batch and continuous flow to obtain high value-added mole- cules I. Itabaiana OC AUDITORIUM 1 Continuous colorimetric screening assays to exploreboth acceptor and donor substratesof amine-Transaminases L. Gourbeyre OC AUDITORIUM 1 Design and optimisationof heterogeneous biocata- lysts for "green" asymmetric hydrogenations in batch and flow S. Cleary PL AUDITORIUM 1	Image: Structure Development of Fe-Ni/SiO2Bimetallic Catalysts for Furfural Hydrogenation using a High-Throughput Screening Approach D. Shi D. Shi AUDITORIUM 2 OC Polyolefin chain shuttling at ansa-metallocene catalysts: legend and reality A. Vittoria AUDITORIUM 2 AUDITORIUM 2 OC Oxidative esterification of 5-hydroxymethyl-2-furfural in solvent-free and base-free conditions Oxidative esterification of 5-hydroxymethyl-2-furfural in solvent-free and base-free conditions Oxidative esterification of 5-hydroxymethyl-2-furfural in solvent-free and base-free conditions Oxidative esterification of 5-hydroxymethyl-2-furfural in solvent-free and base-free conditions Bhoo Nodularplatforms and combination of robotics Bhoo Nodularplatforms and combination of robotics Bhoo Nottet AUDITORIUM 2 OC Heterogeneous Catalysis meets Solid State Chemistry : High-Throughput Discovery and Optimization of Catalysts for Energy & Environ- Monultroplications K. Stöwe AUDITORIUM 2

Tuesday June 15

Non-e	mpirical structure determination for heteroge- Ziegler-Natta, catalyst, based on machine		13h30		Enzyme for Biocomputing	
neous	learning-aided DFT calculation		13h50 🔫		AUDITORIUM 1	~
	G. Takasao					
<i>0C</i>	AUDITORIUM 1					
Cataly	st Optimization in Olefin Polymerization using				Determination of the Association Constant between	a
an HT	E/QSAR workflow: Intuitive 3D-Steric Descrip-		14h10		Cyclodextrin and a Guest using Machine Learning j Catalyzed Functionalization of Bio-Sourced Substrat	or es
	tors toTackle the Database Size Problem		14h30		G. Tahil	
					AUDITORIUM 1)(
00	AUDITORIUM 1					
	Ducké us hu Concers		14h	50 🧹	Teamcat Solutions	
					AUDITORIUM 2	
	Additional	NAL O			Efficient research and development of the industric	
					catalysts for methyl methacrylate synthesis	Ĺ
Faster	bioprocess development by model supported		156	00	W. Ninomiya	
	screening of new biocatalysts	15h00	150	00	AUDITORIUM 2	С
D						
PL					Synthesis and characterization of ε -Keggin-typ	е
		(pnospnomolybaate-based 3D Framework Material M. Sadakane	
			15h	20	AUDITORIUM 2	
Autom	ated Enzyme Optimization using Feedback		131	20		17
Loop o	f Computational Prediction and Experimental	15b40	15h	40 🧹	Efficient non-noble Ni-Cu based catalysts for th	е
	Validation S. Pajalakshmi Sakar	131140	1511		valorization of paimitic acid through decarboxyld	-
00	AUDITORIUM 1				C. Palombo-Ferraz	
UL,			Y		AUDITORIUM 2) <i>C</i>
			16h00			
					Churchanian four antropyrty designs beyond on somehingth	
			\sim		rial and high throughput kinetic investigations	
					C. Mirodatos	
			16h	20	Additionin 2	1
Solid-p	hase screening of transaminases libraries and		16h	20	Gas to chemicals trends in the petrochemical indus	7 <u>_</u> ;-
Solid-p identif	hase screening of transaminases libraries and ication of suitable biocatalysts for industrial	171.00	16h	20	Gas to chemicals trends in the petrochemical indus try and in R&D	7L -
Solid-p identif	hase screening of transaminases libraries and ication of suitable biocatalysts for industrial applications	17h00	16h 0 17h	20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras	2/
Solid-p identif	hase screening of transaminases libraries and ication of suitable biocatalysts for industrial applications F. Paradisi	17h00	16h) 17h	20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2	2/ ;-)C
Solid-p identif OC	hase screening of transaminases libraries and ication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1	17h00	16h) 17h 17h	20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi	РГ ;-)С
Solid-p identif OC	phase screening of transaminases libraries and lication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1	17h00	16h) 17h 17h	20 00 20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over	PL ;- n r
Solid-p identif OC	phase screening of transaminases libraries and ication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1	17h00	16h) 17h 17h	20 00 20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction ove zirconia supported iron catalysts usin high-throughput experimentation	PL ₅- n yr g
Solid-p identif	phase screening of transaminases libraries and lication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1	17h00	16h 17h 17h	20 00 20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios	DL n r g
Solid-p identif	phase screening of transaminases libraries and ication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1	17h00	16h 17h 17h	20 00 20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2	D G D C D C
Solid-p identif	phase screening of transaminases libraries and lication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1	17h00	16h 17h 17h	20 00 20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation t	PL
Solid-p identif OC MODA droger	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- ases by screening biodiversity using innovative	17h00	16h 17h 17h	20 00 20	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons	DC n r g DC
Solid-p identif OC MODA droger	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches	17h00	16h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction ove zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad	PL 5- n er g)C
Solid-p identif OC MODA droger	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée	17h00	16h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2	D 5- n ar g D C o
Solid-p identif OC MODA droger	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- bases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1	17h00	16h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over	PL 5- n ar g)C o r
Solid-p identif OC MODA drogen OC Machi	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning auided activity and stability	17h00	16h 17h 17h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun γ-Alumina Nanofibers, Decorated b	PL 5- n cr g C o C
Solid-p identif OC MODA droger OC Machi	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning guided activity and stability Optimization of Transaminases	17h00	16h 17h 17h 17h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefit production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun γ-Alumina Nanofibers, Decorated by Zinc-Oxide and Metallic Copper	n ar g C n c r y
Solid-p identif OC MODA droger OC Machin	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning guided activity and stability Optimization of Transaminases M. Menke	17h00 17h40 18h00	16h 17h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun γ-Alumina Nanofibers, Decorated b Zinc-Oxide and Metallic Copper I. I. Maor	C n g C n c r y
Solid-p identif OC MODA droger OC Machin	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning guided activity and stability Optimization of Transaminases M. Menke AUDITORIUM 1	17h00 17h40 18h00	16h 17h 17h 17h 17h	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefit production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun y-Alumina Nanofibers, Decorated b Zinc-Oxide and Metallic Copper I. I. Maor AUDITORIUM 2	o n g C o C v y
Solid-p identif OC MODA droger OC Machin	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning guided activity and stability Optimization of Transaminases M. Menke AUDITORIUM 1	17h00 17h40 18h00	16h 17h 17h 17h 17h 18h 18h20	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun γ-Alumina Nanofibers, Decorated by Zinc-Oxide and Metallic Copper I. I. Maor AUDITORIUM 2 Closing	2] 5- 1] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Solid-p identif OC MODA droger OC Machin	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning guided activity and stability Optimization of Transaminases M. Menke AUDITORIUM 1	17h00	16h 17h 17h 17h 17h 18h20	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefit production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun y-Alumina Nanofibers, Decorated by Zinc-Oxide and Metallic Copper I. I. Maor AUDITORIUM 2 Closing S. Paul	C C C C C C C C C C C C C C
Solid-p identif OC MODA droger OC Machin	ohase screening of transaminases libraries and fication of suitable biocatalysts for industrial applications F. Paradisi AUDITORIUM 1 MDH: identification of diverse Amine Dehy- nases by screening biodiversity using innovative in silico approaches E. Elisée AUDITORIUM 1 ne-Learning guided activity and stability Optimization of Transaminases M. Menke AUDITORIUM 1	17h00 17h40 18h00	16h 17h 17h 17h 17h 18h 18h 18h 20	20 00 20 40	Gas to chemicals trends in the petrochemical indus try and in R&D E-J. Ras AUDITORIUM 2 Recognition of efficient promoters for light olefi production from CO2 hydrogenation reaction over zirconia supported iron catalysts usin high-throughput experimentation A. Barrios AUDITORIUM 2 Fatty acids catalytic selective hydrogenation to hydrocarbons Z. Raad AUDITORIUM 2 Carbon Dioxide Hydrogenation to Methanol Over Electrospun y-Alumina Nanofibers, Decorated by Zinc-Oxide and Metallic Copper I. I. Maor AUDITORIUM 2 Closing S. Paul AUDITORIUM 2	2

Thank you to our sponsors for their support

